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We show that Anderson localization in quasi-one-dimensional conductors with ballistic electron dynamics,
such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of
classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly
identical classical action generates an abundance of interference terms, which eventually leads to a suppression
of transport coefficients. We quantitatively describe this mechanism in two different ways: the explicit descrip-
tion of transition probabilities in terms of interfering trajectories, and an hierarchical integration over fluctua-
tions in the classical phase space of the array cavities.
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I. INTRODUCTION

The interplay of quantum phase coherence and repeated
random scattering is at the origin of many effects in mesos-
copic physics.1,2 These effects include weak localization and
universal conductance fluctuations, both of which are small
but fundamental corrections with respect to the conductance
obtained from Drude-Boltzmann theory. They culminate in
Anderson localization, the phenomenon that the resistance of
the majority of low dimensional electron systems grows ex-
ponentially with system size if the system is sufficiently
large.3–5

Originally, Anderson localization and other mesoscopic
effects were discovered in the context of disordered metals,
in which electrons scatter off impurities with a size compa-
rable to their wavelength. Theoretically, quantum effects in
disordered metals are described using the “disorder average”
which deals with an ensemble of macroscopically equivalent
but microscopically different impurity configurations. The
presence of impurities is not essential for the existence of
quantum effects, however. The same effects, with the same
statistical properties, have been found to appear if the elec-
tron motion is ballistic and chaotic, the only source of scat-
tering of electrons being specular reflection off the sample
boundaries.6–8 Besides being of theoretical interest for under-
standing the quantum properties of systems with chaotic
classical dynamics,9 the case of ballistic electron motion is
relevant experimentally for very clean artificially structured
two-dimensional electron gases in semiconductor hetero-
structures, such as quantum dots or antidot lattices.10–12

Unlike disordered metals, in which impurities scatter dif-
fractively, electrons in ballistic conductors have a well-
defined classical dynamics. Many quantum properties of bal-
listic conductors with chaotic classical dynamics can be
understood in terms of classical mechanics by making use of
well-chosen semiclassical methods.7,9 A well-known ex-
ample is the Gutzwiller trace formula, which relates the den-
sity of states to properties of periodic orbits of the classical
dynamics.13 For the conductance G and its quantum correc-
tions, there is a variant of Gutzwiller’s formula �the origins

of which are before Gutzwiller’s work14�, which expresses G
as a double sum over classical trajectories � and � connect-
ing the source and drain contacts,6,15,16

G =
1

2��
� dpdp��

�,�
A�A�ei�S�−S��/�. �1�

Upon entrance and exit, the trajectories � and � have the
same transverse momenta p and p�, respectively, but the po-
sition at which they enter or exit the sample may be different.
Further, A�,� and S�,� are the so-called “stability amplitude”
and the classical action of the trajectories.

With Eq. �1� as a starting point, the conductance, includ-
ing its quantum corrections, can be calculated solely from
knowledge of classical trajectories. Quantum effects have
been linked to the existence of families of classical trajecto-
ries that only differ near “small-angle encounters” of the tra-
jectory with itself.17–21 This semiclassical approach has been
very successful explaining quantum effects in the “perturba-
tive regime” in which quantum interference provides a small
correction to the classical mechanics.17–20,22–26 Weak local-
ization and universal conductance fluctuations are examples
of such perturbative quantum effects. On the other hand, a
direct evaluation of the summation over classical trajectories
breaks down outside the perturbative regime because of a
proliferation of trajectories with correlated classical actions.
This limitation applies both for phenomena that involve
times longer than the Heisenberg time tH=h /�, � being the
mean level spacing in a finite-sized system, or system sizes
larger than the localization length �, if the system exhibits
Anderson localization.27

Recently, Heusler et al. showed that, nevertheless, it is
possible to understand quantum effects in terms of classical
trajectories outside the perturbative regime. They considered
the spectral form factor K�t� of a ballistic cavity, the Fourier
transform of the two-point correlation function of the density
of states. Although direct semiclassical evaluation of K�t�
using Gutzwiller’s trace formula was known to be possible
for t� tH only,17,18,22,23,28,29 Heusler et al. used a different
way to express K�t� in terms of periodic orbits, motivated by
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the field-theoretical formulation of the problem, that allowed
them to calculate K�t� for all times.30

In this article, we consider Anderson localization for bal-
listic electron gases, and show that it, too, can be understood
in terms of interference of classical trajectories, with Eq. �1�
as a starting point. Examples of systems that may exhibit
such “ballistic Anderson localization” are antidot lattices or
arrays of chaotic cavities. Although it is generally accepted
that Anderson localization exists irrespective of the details of
the microscopic electronic dynamics,31 the similarity of the
phenomena for ballistic and disordered electron systems
should not obscure the vastly different starting points of the
theories for the two cases. This difference not only pertains
to the microscopic dynamics �classical deterministic vs quan-
tum probabilistic�, but also to the statistical assumptions of
the theory. Unlike theories of quantum transport in disor-
dered metals, semiclassical theories of ballistic conductors
are intended to describe one specific system.9 Fluctuations
appear solely from variations of the Fermi energy; no
changes in the classical dynamics are invoked. In this sense,
our approach is very different from random matrix theory or
other effectively stochastic theories.

For disordered metals, Anderson localization is the most
prominent for a quasi-one-dimensional geometry, with
sample length L much larger than the sample width W. For
quasi-one-dimensional samples, a full theory of transport in
the localized regime was developed by Dorokhov32 and
Mello et al.33 using a stochastic approach, and by Efetov and
Larkin,34,35 using a field-theoretic approach. Our theory of
ballistic Anderson localization closely follows these ap-
proaches. The fact that the semiclassical theory for ballistic
electrons follows the corresponding quantum-mechanical
theory for disordered metals is not special to the present
case. It is also typical of the trajectory-based semiclassical
theories in the perturbative regime, which have a structure
that resembles the diagrammatic perturbation theory of quan-
tum corrections in disordered metals.17–19

In addition to the ballistic electron gases considered here,
Anderson localization also occurs in certain dynamic sys-
tems with a periodic time-dependent Hamiltonian, such as
the kicked rotor.9 Classically, the dynamics of the kicked
rotor is chaotic, with a momentum that changes diffusively
under the influence of the periodic kicks. Quantum mechani-
cally, it exhibits “dynamic localization,” Anderson localiza-
tion in momentum space rather than in real space.36 The
phenomenology of dynamic localization is equal to that of
Anderson localization in disordered metals. This is con-
firmed by extensive numerical simulations,37,38 as well as a
field-theoretical analysis of the problem.39

Previous trajectory-oriented work addressed localization
in strictly one-dimensional geometries, such as single-
channel wires40 or one-dimensional quantum graphs.41 These
one-dimensional geometries behave differently from the
quasi-one-dimensional ballistic conductors studied here. In
one dimension, the condition of �nearly� identical phases of
interfering semiclassical contributions is much less restric-
tive than in higher dimensions. This reflects in localization in
one dimension being categorically strong—there is no such
thing like “weak” one-dimensional localization. Technically,
these differences show in the “topology” of relevant contri-

butions to the double sum Eq. �1�, or in a different scaling
equation describing the incremental development of trans-
port coefficients.32,33 Specifically, in one dimension, two in-
terfering trajectories scattering a given set of impurities may
do so at any sequential order, provided the length of the
trajectories stay identical �up to a wavelength�. In higher
dimensions, even for a quasi-one-dimensional geometry,
phase-space restrictions remove this freedom; scattering
paths have to be pairwise identical over extended segments
much larger than the characteristic scattering lengths,
l.17–20,42 �A phenomenon that finds its quantitative expression
in the so-called “noncrossing approximation” in theories of
disordered electron systems in higher dimensions.� Only at
lengths scales comparable to the localization length �	 l,
deviations from this rule gain importance, and it is the phase
volume of these processes which we aim to describe in our
present approach. This task is fundamentally different from
the description of one-dimensional, strongly interfering scat-
tering paths. �It may be worth noting that in the closely re-
lated context of disordered quantum wires, a semiclassical or
diagrammatic solution of the strictly one-dimensional
problem40 was obtained more than a decade before the mul-
tichannel case was solved.32,34,35�

The trajectory-based theory of ballistic Anderson localiza-
tion that we report here is constructed for a specific system,
an array of chaotic cavities. A schematic of such an array is
shown in Fig. 1. We use this model system because the
trajectory-based theory of transport through a single chaotic
cavity is well established in the literature.16,19,20,24,26,43,44 Ar-
rays of cavities have been used as a starting point for a field-
theoretic description of Anderson localization using random
matrix theory,45,46 but not with Dorokhov’s method. In Sec.
II, we show how Dorokhov’s theory can be adapted to this
system if the cavities are disordered, and random matrix
theory can be used to describe transport through a single
cavity. In Sec. III, we summarize the basic elements of the
trajectory-based semiclassical formalism. This formalism is
used to construct the trajectory-based semiclassical theory of
ballistic localization in Sec. IV. In Sec. V, we approach the
localization phenomenon from a different perspective. We
describe the array in terms of a nonlinear 
 model whose
perturbative �“diagrammatic”� evaluation generates struc-
tures of paired Feynman amplitudes similar to those appear-
ing in the native semiclassical approach. Alternatively, the
dynamical structure of the theory can be analyzed to identify
and successively eliminate hierarchies of different types of
dynamical fluctuations in the system. In this way we obtain
an effective low energy theory which turns out to be equiva-
lent to the nonlinear 
 model of diffusive quantum wires; the
latter model is known to predict exponential localization at
large length scales. We conclude in Sec. VI.

FIG. 1. Schematic of an array of n chaotic cavities. The cavities
are connected via ballistic contacts with dimensionless conductance
gc. The semiclassical theory requires the limit gc→� at a fixed ratio
n /gc.
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II. ARRAY OF DISORDERED CAVITIES

We now describe how Dorokhov’s approach can be used
to describe Anderson localization in an array of disordered
cavities or quantum dots. We take the disorder in each cavity
to be weak �cavity size is much smaller than the localization
length�, so that transport through a single cavity is described
by random matrix theory.47

A schematic of the array of cavities is shown in Fig. 1.
The cavities are connected via ballistic contacts with dimen-
sionless conductance gc. Since we want to compare with a
semiclassical theory for an array of ballistic cavities, we re-
quire gc	1. Localization takes place if the conductance of
the array is of order unity. This condition is met if the num-
ber n of cavities in the array is comparable to gc. Hence, in
the calculations below we take the limit gc→� while keep-
ing the ratio n /gc fixed. The same limit is taken in the field-
theoretical description of localization,34,35,45,46,48 where it is
known as the “thick wire limit.”

The transport properties of the array of cavities are en-
coded in its scattering matrix Sq�n�. �The superscript “q” is
used to distinguish the quantum-mechanical scattering ma-
trix from its semiclassical counterpart to be introduced in
Sec. III.� The matrix indices of Sq�n� represent the two con-
tacts i=1,2 at the far left and right of the array and the
transverse modes in each contact, �p�,i�= ���ni /W, ni
=1,2 , . . . ,N, where N=gc is the number of channels in con-
tact i, i=1,2. The matrix Sq�n� is a random quantity because
it depends on the Fermi energy and on the precise disorder
configuration in each cavity. Following the approach of
Dorokhov32 and Mello et al.,33 we consider the Hermitian
matrix

Tq�n� = S12
q �n�S12

q†�n� , �2�

and calculate its statistical distribution by expressing Tq�n� in
terms of Tq�n−1� and proceeding recursively. The matrix Tq

is related to the dimensionless conductance g�n� of the array
through the Landauer formula,

g�n� = tr Tq�n� . �3�

Taking the scattering matrix of each individual cavity from
the circular ensemble of random matrix theory,47 one then
finds that the recursion relation for Tq takes the form

Tq = Tq�n� − Tq�n − 1� = −
1

gc
Tq�n − 1�tr Tq�n − 1�

−
1

gc
�,1Tq�n − 1�2 + Xq�n� + O�gc

−3/2� , �4�

where the Hermitian matrix X is a random �noise� term with
a Gaussian distribution,

�Xq�n�ij�n = 0,

�Xq�n�ijX
q�n�kl�n =

1

gc
Tq�n − 1�ilFkj

q +
1

gc
Tq�n − 1�kjFil

q

+
2

gc
�,1Gij

q Gkl
q�, �5�

where Fq=Tq�1−Tq�, �=1 or 2 in the presence or absence of
time-reversal symmetry, respectively, and

Gq = S12
q S22

q†S21
q . �6�

The averaging brackets �. . .�n denote an average with respect
to the disorder configuration in the nth cavity only.

In the limit gc→� while keeping n /gc fixed, the stochas-
tic recursion relation �4� can be mapped to the Dorokhov-
Mello-Pereyra-Kumar �DMPK� equation, which is a stochas-
tic differential equation for the eigenvalues of Tq.32,33,47,49

The solution of the DMPK equation is known,47 which com-
pletes the theory of localization for an array of disordered
cavities.

Alternatively, the stochastic recursion relation �4� can be
used to generate a coupled set of recursion relations for the
disorder averages of the moments of T�n�,

�	
m=1

n

Tim
 =�	
m=1

n

Tim
�n�
 −�	

m=1

n

Tim
�n − 1�
 = −

1

gc
�,1�

k=1

n

ik�Tik+1 	
m=1

m�k

n

Tim� −
1

gc
�

k=1

n

ik��T1	
m=1

n

Tim

+

1

gc
�
k=1

n

�
j=1

ik−1

ik��Tj�Tik−j − Tik−j+1�� 	
m=1

m�k

n

Tim� +
4

�gc
�
k=1

n

�
l=1

k−1

ikil��Tik+il
− Tik+il+1� 	

m=1

m�k,l

n

Tim� + O�gc
−2� , �7�

with

Tm = tr�Tq�m. �8�

�The argument n−1 is suppressed on the right-hand side of
the second equality.� The average in Eq. �7� is the full disor-
der average, applied to all cavities in the array. Taking the

limit gc→� at fixed n /gc, Eq. �7� is mapped to a coupled set
of differential equations for the moments of Tq which is iden-
tical to the corresponding set of differential equations for a
disordered wire.50,51 A subset of these equations can be re-
summed into a partial differential equation for the generating
function F�, with46,52
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F1 =�det 	
�
 2 + �cos��3� − 1�Tq

2 + �cosh��1 � �2� − 1�Tq�1/2
 ,

F2 = �det 2 + �cos��3� − 1�Tq

2 + �cosh��1� − 1�Tq�
 . �9�

As shown in Refs. 46 and 52, the resulting theory of local-
ization in quasi-one-dimension is formally equivalent to that
obtained from the one-dimensional nonlinear sigma
model.34,35,45,48

III. SEMICLASSICAL FORMALISM

The central object in the trajectory-based semiclassical
theory of localization in an array of ballistic chaotic cavities
is a semiclassical representation of the scattering matrix Sq.
In the semiclassical representation, the discrete transverse
momenta become continuous variables, so that the scattering
matrix Sq becomes a “scattering kernel” Sij�p� , p�.53 Follow-
ing standard semiclassical approximations, this scattering
kernel is then represented as a sum over classical trajectories
� connecting contact j to contact i,6,14–16

Sij�p�,p� =
1

�2��
�
�

A�eiS�/�, �10�

such that the transverse momentum of � upon entrance and
exit equals p and p�, respectively. Further, S� is the classical
action of �, and A� is the stability amplitude,

A = � �p�

�q
�−1/2

, �11�

where q is the transverse position upon entrance into the
sample. Maslov indices and other additional phase shifts are
included in S�. �Since Maslov indices do not enter into action
differences between nearby trajectories, they do not play an
essential role in the considerations that follow.� Because the
transverse modes in the quantum-mechanical formulation are
linked to the absolute value of the transverse momentum, not
to the transverse momentum itself, the semiclassical counter-
part of the products SijSkj

† and Sjk
† Sji consist of two contribu-

tions: one in which transverse momenta in contact j are equal
and one in which the transverse momenta are opposite,

�SijSkj
† ��p�,p� = �

�
�

−pF

pF

dp�Sij�p�,p��Skj
† �p, � p�� ,

�Sjk
† Sji��p�,p� = �

�
�

−pF

pF

dp�Sjk
† ��p�,p��Sji�p�,p� , �12�

Together, Eqs. �10� and �12� specify how products of the
quantum-mechanical scattering matrix and its Hermitian
conjugate are expressed in terms of classical trajectories.
�The “−” terms in the summations were omitted from the
semiclassical expression for the conductance, Eq. �1� above.�

For a theory of Anderson localization, we are interested in
the trace of a product of alternating factors S and S† or in the
product of such traces. Using the semiclassical representation

�10�, a polynomial function F�S ,S†� that involves the alter-
nating product of n factors S and n factors S† is written as a
summation over 2n classical trajectories �1 , . . . ,�n and
�1 , . . . ,�n, one trajectory for each factor S or S†, respec-
tively. Each configuration of classical trajectories is weighed
by a phase factor exp�i�S /�� with

�S = �
i=1

n

S�i
− �

i=1

n

S�i
. �13�

Building on work by Richter and Sieber,17–19 Haake and co-
workers have identified a hierarchy of families of classical
trajectories �1 , . . . ,�n that contribute to the average
�F�,20,22–24 where the average is taken with respect to varia-
tions of the Fermi energy while keeping the classical dynam-
ics �i.e., the shape of the cavities� fixed. Their identification
is based on the recognition that families of trajectories con-
tribute to �F� only if their total action difference �S is of
order � systematically, which happens only if the trajectories
�i are piecewise and pairwise identical to the trajectories � j,
i , j=1, . . . ,n, up to classical phase-space distances of order
�1/2.17,18 Families of trajectories that are separated by larger
phase-space distances have typical action differences �S that
are parametrically larger than �, so that their contribution
vanishes upon taking the average. �The condition that the
total action difference �S be of order � systematically means
that �S must remain small if the trajectories are continuously
deformed.�

The simplest choice for a family of trajectories for which
�S is of order � systematically is if each trajectory �i equals
another trajectory � j for the full length of the trajectory.
Calculating �F� from the contribution from such families
of trajectories only is known as the “diagonal
approximation.”16,43,44 Nontrivial families of trajectories
emerge from the possibility of small-angle encounters be-
tween trajectories, at which more than two trajectories are
within a phase-space distance ��1/2.42 At such small-angle
encounters, the pairing between the �i and � j can be
changed—so that now trajectories need to be piecewise iden-
tical only. The duration of a small-angle encounter is the
“Ehrenfest time” �E=�−1 ln�pFl /��, where � is the Lyapunov
exponent of the classical dynamics, pF is the Fermi momen-
tum, and l a characteristic length scale of the classical dy-
namics. The fundamental action integrals corresponding to
each small-angle encounter are known,22,23,54,55 and the re-
sulting theory takes the form of simple combinatorial rules
with which any product of traces of products the scattering
matrix and its Hermitian conjugate can be calculated to arbi-
trary order in � from the semiclassical representation of S,
provided that the Ehrenfest time �E be much smaller than the
sample’s mean dwell time �D.20,22–24 �The case of finite
�E /�D is considerably more complicated, see, e.g., Refs. 25,
26, 56, and 57, but not relevant for a semiclassical theory of
Anderson localization.�

In the remainder of this text, we refer to a calculation of
the energy-average �F� using contributions from families of
trajectories thus constructed as the “trajectory-based semi-
classical formalism.” Although there is no formal proof that
this formalism is exact, i.e., that there are no other contribu-

PIET W. BROUWER AND ALEXANDER ALTLAND PHYSICAL REVIEW B 78, 075304 �2008�

075304-4



tions to �F� than from families of piecewise paired classical
trajectories, the formalism satisfies all known conservation
rules, and calculations based on trajectory-based semiclassics
have been found to agree with fully quantum-mechanical
calculations whenever applicable.20,57 The present calcula-
tion can be viewed as another demonstration of the validity
of trajectory-based semiclassics by showing that the same
formalism can serve as the starting point of a theory of
localization.

While we do not need the detailed results of the
trajectory-based semiclassical formalism, there are two prop-
erties of ensemble averages calculated using this formalism
that are particularly relevant for our calculations below:

�i� All averages are compatible with the condition of
unitarity,20

�
j

�SijSkj
† ��p,p�� = �

j

�Sjk
† Sji��p,p�� = ik�p − p�� .

�14�

�ii� For a product SijSkj
† or Sji

† Sjk, the trajectory � of the
semiclassical representation for S and the trajectory � of the
semiclassical representation of S† at contact j satisfy

p� = p�, �q� − q�� � �/pF. �15�

In particular, this implies that there is no contribution from
the second term in Eq. �12� for a product of two scattering
kernels.25,56

Property �ii� follows from the requirement that the net
action difference �S to be of order � systematically. This
means that �S should remain of order � if one �continu-
ously� deforms the trajectories. Deformed trajectories have
different transverse momenta p and p� or transverse positions
q and q� in the entrance and exit contacts, but they remain
�exponentially� close to the original trajectory in the sample
interior. If condition �ii� is not met, the sum over all defor-
mations of a certain set of trajectories contains a rapidly
oscillating phase factor, which suppresses the contribution to
the average, even if the action difference �S happens to be
small for a particular set of trajectories in the sum.

IV. ARRAY OF BALLISTIC CAVITIES

In the perturbative regime, the semiclassical theories of
quantum corrections to transport and to the density of states
closely followed the corresponding theory for disordered
metals. The semiclassical formalism described in the Sec. III
was instrumental in formalizing the relation between the two
types of theories. Motivated by this correspondence, we now
look for the possibility to adapt the theory of localization in
an array of disordered cavities �Sec. II� to the case of an
array of ballistic cavities.

Thus, paraphrasing the arguments of Sec. II, the goal of
our calculation will be to find the full probability distribution
of the function

T�n;p�,p� = �S12S12
† ��p�,p� �16�

for an array of n cavities. As shown in Sec. II, there are two
ways in which this can be accomplished:

�1� Using a stochastic approach, in which one considers
the stochastic evolution of the function T�n ; p� , p� as a func-
tion of n, or through

�2� the construction of a set of recursion relations for all
moments of T�n�.

In both cases, the resulting theory is formally identical to
the known theories of localization in quasi-one-dimension.

Although technically simpler, the stochastic approach is at
odds with the goals of a semiclassical theory for ballistic
localization; the goal of a theory of localization in an array of
ballistic cavities is to describe an array of cavities with a
fixed shape, using variations of the Fermi energy as the only
source of statistical fluctuations. Since the Fermi energy is
set globally, for all cavities at the same time, quantum cor-
rections for different cavities are not independent, and a sto-
chastic approach is ruled out a priori. A stochastic approach
is possible, however, if one relaxes the goals of the theory,
allowing for small variations of the shape of each cavity, or
for variations of a “gate voltage” that sets the Fermi energy
of each cavity independently.

Below we first describe the stochastic approach. In Sec-
tion IV A, we consider the case of broken time-reversal sym-
metry, which is technically simpler. The discussion of local-
ization in the presence of time-reversal symmetry is given in
Sec. IV B. In Sec. IV C, we discuss how a hierarchy of re-
cursion relations for the moments of T can be constructed,
where the average is taken with respect to variations of the
Fermi energy of the entire array only.

A. Stochastic approach

The stochastic approach deals with �statistical� properties
of the function T�n� before averaging. Although the proper-
ties �i� and �ii� of the trajectory-based semiclassical formal-
ism �Sec. III� are satisfied for the average of any product of
traces of products alternating factors S and S† to arbitrary
order in �, they have not been shown to follow from the
semiclassical scattering matrix �Eq. �10�� before averaging.
However, since our goal is a statistical theory of the
transport—the final statements of the theory will refer to av-
eraged quantities only—we will accept these two properties
on the level of the sample-specific semiclassical scattering
kernel S�n ; p� , p� in the arguments that follow below.

Starting from Eq. �10�, the kernel T is expressed as a
double sum over classical trajectories � and � that connect
the entrance and exit contacts �Fig. 2�,

T�p�,p� = �
�,�

A�A�

2��
ei�S�−S��/�. �17�

Here p and p� are the transverse momenta of � and � upon
entrance. The two trajectories have equal transverse mo-
menta upon exit, and exit at positions a quantum uncertainty
�� / pF apart—see property �ii� above. Below, we express the
difference T=T�n�−T�n−1� in terms of classical trajecto-
ries. We first calculate the average �T�n, where the average
is taken with respect to variations of the Fermi energy of the
nth cavity �or of its shape�, while keeping the Fermi energy
and shape of the other cavities fixed. After that, we calculate
the variance of T and the higher cumulants.
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Average of T. When calculating the average �T�n
= �T�n��n−T�n−1� to leading order in 1 /gc in the absence of
time-reversal symmetry, it will be sufficient to calculate
�T�n��n in the diagonal approximation by considering trajec-
tories � and � that are “paired” in the nth cavity. Note,
however, that trajectories need not be paired in the first n
−1 cavities, because no average is taken there. Each trajec-
tory is classified by the number of times m�, m� that it enters
the nth cavity from the �n−1�th cavity. Hence, for each tra-
jectory there are m� and m� segments in the nth cavity,
which we label as �1 , . . . ,�m�

and �1 , . . . ,�m�
. Since trajec-

tories are paired in the nth cavity, m�=m�=m. Examples of
trajectory pairs � and � with m=1, 2, and 3 are shown in
Fig. 3. Since trajectories need to be paired upon exit, �m has
to be paired with �m. While there are �m−1�! ways in which
the remaining segments can be paired, we now show that the
“diagonal pairing,” � j paired with � j, j=1, . . . ,m, gives the
main contribution to �T�n, whereas all other pairings give
contributions a factor 1 /gc smaller.

Cutting the trajectories � and � at the contact between the
�n−1�st and nth cavity also separates the part of each trajec-

tory that resides in the first n−1 cavities into m segments.
The first segment of each trajectory connects the entrance
contact to the exit of the �n−1�st cavity. All other segments
connect the exit contact of the �n−1�st cavity to itself. Since
the electron dynamics in the nth cavity is fully ergodic, the
positions and transverse momenta with which these segments
cross the interface between the �n−1�st and nth cavity are
fully random, without correlations between different seg-
ments. �Correlations can be ruled out down to quantum
phase-space distances �� / �pFL�1/2 because the dwell time
�D	�E.� Hence, these m segments can be interpreted as the
semiclassical representation of a product of S12, S12

† , and m
−1 factors S22 and S22

† , before taking any average. Note that,
although trajectories � ,� that are “paired” in the nth cavity
have a phase-space distance of order � / �pFL�1/2 or smaller
when they enter/exit the nth cavity from/to the �n−1�st cav-
ity, such trajectory pairs are sufficient for the semiclassical
calculation of the complete kernels T because of property �ii�
of Sec. III.

For the diagonal pairing, the m segments of � and � that
reside in the first n−1 cavities generate a particularly simple
product of factors S and S†, T�n−1��tr R�n−1��m−1, where

R�n;p,p�� = �S22�n�†S22�n���p,p�� �18�

is the reflection coefficient for the first n−1 cavities, seen
from the exit contact of the �n−1�st cavity, and

tr R�n� = �
−pF

pF

dpR�n;p,p� . �19�

Using the trajectory-based semiclassical formalism to evalu-
ate the diagonal trajectory sums in the nth cavity,19,20,24,43,44

one then easily finds that the diagonal pairing gives

�T�n��n = �
m=1

�
1

2mgc
m−1T�n − 1��tr R�n − 1��m−1

=
T�n − 1�gc

2gc − tr R�n − 1�
. �20�

Using unitarity, one has

tr R�n� = gc − tr T�n� , �21�

so that Eq. �20� can be rewritten as

�T�n = −
1

gc
T�n − 1�tr T�n − 1� , �22�

up to corrections of order 1 /gc
2. This is precisely the semi-

classical equivalent of the recursion relation of Eq. �4�, av-
eraged over the Fermi energy or shape of the nth cavity.

It remains to show that nondiagonal pairings, in which a
segment � j is not paired with � j give a contribution to �T�n
that can be neglected in the limit of large gc. Hereto, we first
consider the case m=3, for which the only possible nondi-
agonal pairing is �1↔�2, �2↔�1 �Fig. 3, bottom right�. For
this pairing, the three segments of the trajectories that reside
in the first n−1 cavities generate the semiclassical represen-
tation of a product of six scattering matrices,
S12S22

† S22S22
† S22S12

† . From unitarity, one has

FIG. 2. �Color online� Example of a pair of trajectories � and �
contributing to T�p� , p�= �S12S12

† ��p� , p�. Upon entering the sample,
the two trajectories have different transverse momenta p and q, and
may enter at different transverse positions. Upon exiting the sample,
� and � have the same transverse momentum, and exit at transverse
positions a distance �� / pF apart.

FIG. 3. �Color online� Examples of trajectories � and � contrib-
uting to �T�n��n, where an average is taken over the Fermi energy of
the nth cavity only. The four panels show trajectories contributing
for m=1 �top left�, m=2 �top right�, m=3 with diagonal pairing
�bottom left�, and m=3 with nondiagonal pairing �bottom right�.
The number m counts the number of times � and � enter the nth
cavity from the �n−1�st cavity. The three dashed lines in each panel
represent the entrance contact, the contact between the �n−1�st cav-
ity and the nth cavity, and the exit contact �from left to right�. In the
nth cavity, the trajectories � and � are piecewise equal up to quan-
tum uncertainties.
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S12S22
† S22S22

† S22S12
† = T�n − 1� − 2T�n − 1�2 + T�n − 1�3.

�23�

For comparison, the diagonal pairing for m=3 generates
T�n−1��tr R�n−1��2, which is a factor �gc

2 larger because
tr R�n−1��gc. Using the ergodic dynamics in the nth cavity,
the nondiagonal pairing of segments in the nth cavity for
m=3 gives a contribution to �T�n equal to

�T�n
�3,non diag� =

1

8gc
2 �T�n − 1� − 2T�n − 1�2� + T�n − 1�3.

�24�

This is a factor �1 /gc smaller than the leading contribution
�Eq. �22�� to �T�n.

The same arguments can be used for m�3: Nondiagonal
pairings come at the expense of at least two factors tr R�n
−1� and, hence, lead to contributions to �T�n that are at least
a factor �1 /gc smaller than the contribution from diagonal
pairing. These arguments can also be used to show that con-
tributions to �T�n��n that involve small-angle intersections of
the trajectories in the nth cavity are a factor 1 /gc smaller
than the leading contribution considered above.

Fluctuations of T. The fluctuations of T are described
by the covariance �T�p1 , p2�T�p1� , p2���n. We calculate
�T�p1 , p2�T�p1� , p2���n from the identity

�TT��n = ��TT���n − T�n − 1��T��n − T��n − 1��T�n,

�25�

where we used the shorthand notation T�n�=T�n ; p1 , p2�,
T��n�=T�n ; p1� , p2��, and �TT��=T�n�T��n�−T�n−1�T��n
−1�. The average �T�n is given by Eq. �22� above, so it
remains to calculate ��TT���. The product T�n�T��n� is rep-
resented as a sum over four classical trajectories, �, �, ��,
and ��. As before, we introduce the numbers m�, m�, m��,
and m�� that indicate how often each trajectory enters the nth
cavity. Since trajectories always enter or exit the nth cavity
in pairs, one has m�+m��=m�+m��.

Unlike the average �T�n, for which the only contribution
came from the diagonal approximation in the nth cavity with
diagonal pairing of the segments � j and � j, the average of
the second moment ��TT���n has contributions from both
nondiagonal pairings in the diagonal approximation and from
trajectories beyond the diagonal approximation, which have
small-angle encounters in the nth cavity. We first consider
the diagonal approximation, for which each segment �i or �i�
is paired with another segment � j or � j�. For the diagonal
pairing of segments, � j↔� j, j=1, . . . ,m�=m� and � j�↔� j�,
j=1, . . . ,m��=m��, we find

��TT���n
diag = T�n − 1��T��n + T��n − 1��T�n. �26�

This contribution to �TT��n precisely cancels the second
and third terms in Eq. �25�. Hence �TT��n must be from
nondiagonal pairings of the trajectory segments within the
diagonal approximation, or from trajectory configurations
beyond the diagonal approximation in the nth cavity. Since
the latter class of trajectories have small-angle encounters,
we write

�TT��n = ��T��n
non diag + ��TT���n

enc. �27�

The leading nondiagonal pairing appears if one pairs the
first u segments of � with the first u segments of ��, and the
last m�−u segments of � with the last m�−u segments of �,
as well as the first v segments of �� with the first v segments
of �, and the last m��−v segments of �� with the last
m��−v segments of ��, where u=1, . . . ,m�−1 and v
=1, . . . ,m�� −1 are integers. Two examples, with m�=2, m��
=1, u=1, and v=0, and with m�=m��=2 and u=v=1, are
shown in Fig. 4. One then finds

�TT�n
non diag =

1

gc
�F�p1�,p2�T�p1,p2�� + F�p1,p2��T�p1�,p2�

+ T�p1,p2��T�p1�,p2�� + O�1/gc
2� , �28�

where T�p1 , p2�=T�n−1; p1 , p2� and F�p1 , p2�=F�n
−1; p1 , p2�, with

F�n� = tr S12S22
† S22S12

† = T�n� − T�n�2. �29�

Other pairings give contributions of order 1 /gc
2 or smaller.

The second contribution to the fluctuations of T comes
from trajectories with a small-angle encounter in the nth cav-
ity. Since we only need fluctuations of T to leading order in
1 /gc, it is sufficient to consider trajectories with one small-
angle encounter only. Taking the small-angle encounter to be
between the segments �u, ��u, ��v, and ��v, with 1�u, v
�m ,m�, and pairing the first u−1 segments of � with the
first u−1 segments of ��, and the last m−u segments of �
with the last m−u segments of �, as well as the first v−1
segments of �� with the first v−1 segments of �, and the last
m�−v segments of �� with the last m�−v segments of ��, we
find

�TT�n
enc = − T�p1,p2��T�p1�,p2� �

u,v=1

�

�
m=u

�

�
m�=v

�
�tr R�m+m�−2

2m+m�+1gc
m+m�−1

+ T�p1,p2��T�p1�,p2��
m=1

�

�
m�=1

�
�tr R�m+m�−2

2m+m�gc
m+m�−1

= −
1

gc
T�p1,p2��T�p1�,p2� , �30�

where the first line comes from encounters in the interior of

FIG. 4. �Color online� Examples of four trajectories �, �, ��,
and �� contributing to �T�n ; p� , p�T�n ; p� , p���n for an array of cha-
otic cavities, where the average is taken with respect to the Fermi
energy of the nth cavity only. The examples shown here have a
nondiagonal pairing with m�=m��=2, m��=m�=1 �left panel� and
m�=m��=m��=m�=2 �right panel�. In the nth cavity, the trajecto-
ries � and �� are piecewise equal to � and ��, up to quantum
uncertainties.
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the nth cavity and the second line comes from encounters
that touch the exit contact.25,58 Examples of the two terms for
m=m�=1 are shown in Fig. 5. �We do not need to consider
encounters that touch the contact between the �n−1�st cavity
and the nth cavity, because the contribution from such en-
counters is included in the �products� of the kernel T of the
first n−1 cavities.�

Combining everything we have

�T�p1,p2�T�p1�,p2���n =
1

gc
�F�p1�,p2�T�p1,p2��

+ F�p1,p2��T�p1�,p2�� + O�1/gc
2� .

�31�

Equation �31� is the semiclassical equivalent of Eq. �5�.
Higher cumulants of T can be calculated in the same

way. For the kth cumulant, one finds that only pairings that
involve trajectories out of all k factors T contribute. Each
additional factor T involved in the pairing scheme contrib-
utes an additional factor 1 /gc, which is why all cumulants
with k�2 are of subleading order in 1 /gc.

Together, Eqs. �22� and �31� form the semiclassical
equivalent of the stochastic recursion relation �4� used in the
fully quantum-mechanical theory of localization in disor-
dered quasi-one-dimensional wires. The two moments de-
scribe the evoution of transport coefficients in the system. In
the “semiclassical limit” �gc→� while keeping gc /n fixed�,
and in perfect analogy to the stochastic approach to quantum
transport reviewed in Sec. II, this information reduces to the
scaling equation of Dorokhov, Mello, Pereyra, and Kumar
�DMPK�.32,33,47 The mapping onto the DMPK equation is
proof of localization in arrays of chaotic cavities. It demon-
strates that the transport characteristics of our system are
equivalent to those of disordered quantum wires. The ap-
proximations used in this construction are stabilized by tak-
ing the semiclassical limit, and all have a one-to-one coun-
terpart in the localization theory of disordered systems.

B. Presence of time-reversal symmetry

In the presence of time-reversal symmetry, both the aver-
age �T�n and the covariance �TT��n are different. In both
cases, the difference appears because one can pair time-
reversed trajectories when taking the ensemble average in the
nth cavity.

There are two additional contributions to the average
�T�n. The first of these arises from the diagonal approxima-
tion for the average in the nth cavity. As before, we define
the number m=m�=m� as the number of times the trajecto-
ries � and � enter the nth cavity from the �n−1�st cavity.
The first additional contribution to �T�n then involves the
pairing of segments �u+j with the time reversed of �u+v−j−1,
j=0, . . . ,v−1, and 1�u�u+v�m,

�T�n
�1� = F�

v=1

�

�
m=v+1

�
1

2mgc
m−1 �tr R�m−2

+ T�
u=1

�

�
v=1

�

�
m=u+v+1

�
tr R2

2mgc
m−1 �tr R�m−3 =

1

gc
�F + T� .

�32�

Examples for trajectory pairs contributing to the first and
second line in Eq. �32� are shown in Fig. 6. The second
contribution comes from small-angle encounters inside nth
cavity involving the segments �u, �u, �u+v, and �u+v, where
1�u�u+v�m. For this contribution one finds

�T�n
�2� = −

2

gc
T . �33�

Examples of trajectory pairs contributing to �T�2��n are
shown in Fig. 7. Using F=T−T2 and adding these two con-
tributions to Eq. �22� one finds

�T�n = −
1

gc
T�n − 1�tr T�n − 1� −

1

gc
T2, �34�

up to corrections of order 1 /gc
2.

For the fluctuations of T in the presence of time-reversal
symmetry one finds an extra contribution from pairing � j
with the time reversed of ��u+1−j, j=1, . . . ,u, or � j� with the

FIG. 5. �Color online� Two examples of a set of four trajectories
contributing to �TT��n that have a small-angle encounter in the nth
cavity. For the left panel, the encounter is in the interior of the nth
cavity. For the right panel, it touches the exit contact.

FIG. 6. �Color online� Two examples of trajectory pairs contrib-
uting to �T�n in the presence of time-reversal symmetry.

FIG. 7. �Color online� Two examples of trajectory pairs contrib-
uting to �T�n in the presence of time-reversal symmetry. The tra-
jectory pairs have a small-angle encounter in the nth cavity.
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time reversed of �u+1−j, while following diagonal pairing
rules for all other segments. Proceeding as before, we find

�T�p1,p2�T�p1�,p2���n =
1

gc
�F�p1�,p2�T�p1,p2��

+ F�p1,p2��T�p1�,p2�

+ 2G�p,p1��G
†�p2,p2��� + O�1/gc

2� .

�35�

where

G�p,p�� = G�p�,p� = �S12S22
† S21��p,p�� . �36�

The stochastic process defined by Eqs. �34� and �35� pre-
cisely mirrors the stochastic process �4� for the quantum-
mechanical matrix Tq=S12

q S12
q†.

C. Recursion relations for the moments of T

The direct construction of recursion relations for the mo-
ments of T is an alternative to the stochastic approach that
avoids extending the use of the properties �i� and �ii� of Sec.
III to sample-specific quantities and the necessity to define a
statistical ensemble by varying the Fermi energy or shape of
each cavity individually. The construction of recursion rela-
tions for moments of T proceeds in the very same manner as
the construction of the stochastic recursion relations for T,
with the additional requirement that trajectories are piece-
wise paired in all n cavities, not only in the nth cavity. Since
the arguments of Secs. IV A and IV B did not rely on the
structure of the trajectories in the first n−1 cavities, one im-
mediately concludes that the recursion relations for the mo-
ments of T derived this way are identical to the recursion
relations for the moments of T one obtains from the stochas-
tic approach. Starting from the stochastic recursion relations
�22� and �31� or �34� and �35�, one arrives at the same hier-
archy of recursion relations �7� derived for an array of dis-
ordered cavities.

We illustrate this procedure for the recursion relation for
the first moment �tr T�n�� in the absence of time-reversal
symmetry. Following the rules of the semiclassical formal-
ism, the average �tr T�n�� is determined by trajectory pairs �,
� that are piecewise paired throughout the entire array of
cavities. The trajectories can have small-angle self-
encounters, at which the pairing between � and � can be
changed. Each pair of trajectories is classified by the number
m of times the trajectories enter the nth cavity from the �n
−1�st cavity. The m segments of each trajectory in the nth
cavity are labeled �1 , . . . ,�m and �1 , . . . ,�m.

As in Sec. IV A, it will be sufficient to consider pairs of
trajectories in which each segment � j is paired with the cor-
responding segment � j, j=1, . . . ,m. Trajectory pairs with
self-encounters in the nth cavity or with nondiagonal pair-
ings in the nth cavity give contributions to �tr T� that are a
factor 1 /gc smaller than the leading contribution. For the
diagonal pairing, the remaining m segments of the trajecto-
ries � and � that reside in the first n−1 cavities precisely
generate �tr T�n−1��tr R�n−1��m−1�, where the averaging
brackets refer to variations of the Fermi energy for the entire
array of cavities. Hence, we find

�tr T�n�� = �
m=1

�
�tr T�n − 1��tr R�n − 1��m−1�

2mgc
m−1

= � gc tr T�n − 1�
2gc − tr R�n − 1�
 . �37�

A schematic representation of trajectory pairs contributing to
Eq. �37� with up to two self-encounters in the first n−1 cavi-
ties are shown in Fig. 8. Using unitarity to express R in terms
of T and subtracting �tr T�n−1��, one then finds

�tr T�n�� = �tr T�n�� − �tr T�n − 1�� =
1

gc
��tr T�n − 1��2� .

�38�

This is the same equation as one obtains from taking the
average of the increment tr T in the stochastic approach.

V. FIELD THEORY FORMULATION

In this section, we will approach the localization phenom-
enon from a different perspective. We will use that the quan-
tum dot array depicted in Fig. 1 supports hierarchies of dif-
ferent types of field fluctuations in a field-theoretic
description. These fluctuations reflect the fate of density dis-
tributions in classical phase space under the dynamical evo-
lution of the system. Each of these fluctuations, thus, comes
with a characteristic “relaxation time,” i.e., a time scale on
which the fluctuation decays. �For example, fluctuations in-
homogeneous in the sector of phase space describing an in-

FIG. 8. �Color online� Examples of trajectory pairs contributing
to the full average �T�n�� in the absence of time-reversal symmetry.
The trajectory pairs have m=1 �top�, m=2 �center�, and m=3 �bot-
tom�. The left panel shows trajectory pairs without small-angle self
intersections. The right panel shows trajectory pairs with two small-
angle self intersections in the first n−1 cavities.
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dividual quantum dot will decay on a time scale comparable
to the time of flight through the dot, etc.� In the description
of low energy phenomena such as the zero-frequency �dc�
conductance, modes operating at short-time scales can be
treated perturbatively. Their feedback into the sector of long-
time scales then stabilizes a “low energy theory.” In the fol-
lowing, we will derive a theory that is minimal in that it
contains information equivalent to that stored in the Fokker-
Planck equation of localization. The strategy pursued here
parallels one applied previously39 to the problem of dynami-
cal localization in the quantum kicked rotor �also known as
the “standard map”�. One difference is that the spectrum of
different modes encountered in the present problem happens
to be more complex. Our logics also resemble that of Ref.
59, where it had been shown that the relevant low energy
theory of an ergodic quantum system contains the informa-
tion otherwise stored in random matrix theory.

Technically, our discussion will be based on a formulation
of the array in terms of the ballistic nonlinear 
 model.60,61 A
quadratic approximation in energetically high lying modes
generates an effective low energy theory wherein each quan-
tum dot is treated as a structureless �“ergodic”� entity. This
theory will be equivalent to the celebrated nonlinear 
 model
of disordered quantum wires,62 a model that predicts Ander-
son localization on large length scales. We will see that the
parameters stabilizing the hierarchical mode integration are
the same as those utilized in previous sections of this paper.

Conceptually, the hierarchical scheme is an alternative to
an indiscriminate perturbative integration over all modes in
one go. That latter scheme would be essentially equivalent
�see Ref. 59 for a discussion in the context of spectral statis-
tics� to a semiclassical expansion in terms of paired trajecto-
ries. In this sense, the hierarchical mode integration pro-
cesses the information stored in the statistics of trajectories
by different means.

A. Field theory of the quantum dot array

Our starting point will be the description of the quantum
dot array in terms of the supersymmetric ballistic nonlinear 

model. This theory is obtained by averaging exact functional
representations of Green’s functions over an energy interval
of width �E centered around the uniform Fermi energy EF of
the array. A subsequent saddle-point approximation �stabi-
lized in the parameter EF /�E	1� then obtains a field theory
in classical phase defined by

Z �� DT exp�− S�T�� , �39�

with

S�T� =
����

2
�

�

�dx�tr�T � ��H,T−1�� + Sreg�T� . �40�

The integration variables in Eq. �39�, T�x�= �T����x�� are
�super� matrix valued fields defined on shells �= �x�H�x��
=E0� of constant energy in classical phase space. Further, x
��q ,p� where q and p are coordinates and momenta, re-
spectively, H�x� is the Hamiltonian function of the system,

the integral over the energy shell is normalized to the �spa-
tial� volume of the system, ���dx�=Vol, and � is the single-
particle density of states per volume, �=1 / ��Vol�. For time-
reversal and spin rotation invariant systems �orthogonal
symmetry class, �=1�, the “internal” structure of the matri-
ces T��� is described by a composite index �= �a ,r , t�, where
a= + /− discriminates between the advanced and retarded
sector of the theory, r=b , f discriminates between commut-
ing and anticommuting sectors, and t=1,2 accounts for the
operation of time reversal. Time reversal symmetry reflects
in the relation ��TT�−1��q ,−p�=T−1�q ,p�, where � is a fixed
matrix whose detailed structure will not be of concern
throughout. For time-reversal noninvariant systems �unitary
symmetry, �=2�, no time-reversal structure exists and �
= �a ,r�. In either case, the matrices T carry a coset space
structure in the sense that configurations T and TK are to be
identified if �K ,��=0, where �=
3

ar and “ar” stands for ac-
tion in advanced/retarded space. Finally, the regulatory ac-
tion

Sreg�T� � �
�

�dx�str��T−1 � �T�, ↓0

determines the “causality” of field fluctuations, but will oth-
erwise not be of much relevance throughout.

The fluctuation behavior of the fields T in Eq. �39� is
governed by the classical Liouville operator �H , � �where
�, � is the Poisson bracket�. Quantum mechanics enters the
problem through the presence of Moyal products “�” in Eq.
�39�. In essence, this product operation63 limits the maximum
resolution of the theory in-phase space to scales of the order
of a Planck cell. In Secs. V B and V C, we reduce the above
“bare” theory to an effective low energy theory describing
localization phenomena.

B. Hierarchical mode integration

Before turning to the technicalities of the mode integra-
tion, let us describe the relevant hierarchies in qualitative
terms: fluctuations inhomogeneous in the phase-space sector
representing individual dots are expected to relax on short-
time scales comparable to the time of flight across the dot,
tf.

64 On the other hand, relative fluctuations in the configu-
ration of different dots can survive up to time scales of the
order of the dwell time �D	 tf. To describe this hierarchical
decay profile within our field theory framework, we focus on
a section of the array containing two neighboring quantum
dots �cf. Fig. 9�. The fields T�x� representing phase-space
fluctuations in this subsystem may be decomposed as T
=TsTf, where Ts,f are “slow” and “fast” fluctuations, respec-
tively. The slow fluctuations are �i� homogeneous within
each dot separately. In particular, �ii� they do not vary in any
spatial cross section transverse to the array, and �iii� do not
depend on momentum. However, �iv� the weakness of the
interdot coupling ��D	 tf� leaves room for gradual fluctua-
tions of the slow modes as we pass from one dot into the
other. This suggests a parametrization Ts�x�=Ts�q�, where q
is the component of q parallel to the longitudinal direction of
the two-dot system. Point �i� above means that Ts�q�0�
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=TL and Ts�q	0�=TR, where TL,R are the constant slow
mode configurations of the left and the right dot, respec-
tively. As we are going to check in a self-consistent manner,
�v� relative fluctuations between left and right dot are sup-
pressed �in a parameter of the order of the number of trans-
verse quantum channels supported by the connector region�
so that a leading-order expansion in relative fluctuations
TLTR

−1 is sufficient. �Conceptually, this expansion is equiva-
lent to the Kramers-Moyal expansion employed in the deri-
vation of the Fokker-Planck equation above.�

The field Tf encapsulates all other fluctuations, i.e., fluc-
tuations that do not meet the criteria �i–v�. Generic fluctua-
tions of this type—think of fast fluctuations deep inside the
phase space of one of the dots—are strongly gapped and do
not couple to the slow fluctuations. �Formally, this decou-
pling manifests itself in an effective “orthogonality” between
the modes representing these fluctuations.� However, there is
one sector of phase space, �c, in which fast and slow fluc-
tuations talk to each other. The domain �c includes all points
in-phase space which pass from one dot to the other in a time
of order tf ��D, much smaller than the typical dwell time �cf.
the shaded area in Fig. 9�. This region is special that it over-
laps with the domain of gradual variation of the slow fields
�cf. point �iv� above�. As we will see, a perturbative integra-
tion over fast fields in �c effectively determines the slow
field coupling between the two dots.

To prepare the integration over the fast fields in �c, we
need to bring the notation to a more explicit level: assuming
that the bulk dynamics is ballistic, �H , �=vFn ·� where n is
the unit vector in momentum space, and vF the Fermi veloc-
ity. Current conservation in the specular reflection at the sys-
tem boundaries translates to the effective boundary condition
f�x ,n�= f�x ,n�, where f is a phase function subject to the
action of �H , �, x is a boundary point and n is the direction
vector with flipped normal component.

We next parametrize fluctuations as Ts,f =exp�Ws,f�, where
the field generators carry a block structure �in advanced/
retarded space�,

Ws,f =  Bs,f

B̄s,f
� .

�For further technical details on this representation, we refer
to Ref. 62.� We now substitute these generators into the ac-
tion, expand to leading order in Wf, and integrate. This leads
to the effective action

Seff�Ts� =
1

2
��S�1��Ts,Wf��2� + Sreg�Ts� , �41�

where �. . .���DWf exp�−S�2��1 ,Wf���. . .�, and S�n��Ts ,Wf� is
of nth order in Wf. Due to the isotropy of Ts in momentum
space and the linearity of the Poisson bracket in n, the action
does not contain a contribution of zeroth order in the fast
fields. The dominant contribution to the coupling between
fast and slow fluctuations is given by the linear term,

S�1��Ts,Wf� = ����vF�
�c

dqdnn�str�Ws�q,n���q�� ,

�42�

where we have introduced the abbreviation �
���qTs���Ts

−1, the integration over the direction of momen-
tum is normalized as �dn=1, n� is the component of n par-
allel to the longitudinal direction and the Moyal product has
been omitted �which is permissible due to the general rela-
tion ��dx��f �g��x�=��dx��fg��x� for the integrated product
of two functions—presently, matrix elements of � and
W—in phase space�.

Neglecting contributions of O��Wf
2� �as compared to the

O��Wf�-terms above� the quadratic Ws-action is given by

S�2��Ts,Wf� � S�2��1,Wf� = �����
�c

dqdn str�B̄f�q,n�

��vFn · � + �Bf�q,n�� .

Fast field fluctuations can now be integrated out
according to the prescription �str�A�q ,n�Bf�q ,n��
�str�Ā�q� ,n��B̄f�q� ,n����=�n−n����q ,q� ;n�, where

��q,q�;n� �
1

����
�vFn · � + �−1�q,q�� .

Specifically, the effective action is given by

Seff�Ts� = �����vF�2�
�c

dqdq�dn

�n�
2str��21�q��12�q����q,q�;n� .

So far, we have not made reference to the specific properties
of the phase-space region �c. We now assume that the corri-
dor connecting the dots has waveguide properties, in that it
�a� does not contain significant backscattering, and �b� the
restriction of the Liouville operator to �c has plane-wave-
like eigenfunctions characterized by a conserved
longitudinal/transverse momentum k� /k. We also assume
that �c�, the slow fields, smoothly interpolate between TL and
TR in a region centered around the longitudinal coordinate
q=0. The presumed proximity TL�TR implies that ��q�

FIG. 9. �Color online� Top left: cartoon of an array of weakly
coupled quantum dots. Center left: cut region containing two dots.
The shaded region indicates the real-space support of the coupling
phase space �c. Bottom left: plot indicating the profile of weakly
fluctuating field configurations: constancy throughout each dot,
gradual variation in the coupling region. Center right: zoom into the
coupling region. The phase-space region �c contains points x
= �q ,n� that will migrate between the two dots in short time, i.e.,
without undergoing back scattering. �The opening angles represent
those directions n that meet this criterion.� Bottom right: schematic
plot of real-space profile of phase-space fluctuations generating the
interdot coupling.
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��qW�q�� can be linearized, where we suppressed the slow
field index “s” for notational transparency. Under these cir-
cumstances, and noting that the integration over q� implies a
projection onto the zero-momentum sector k�=0, we obtain

Seff�Ts� = − ����ScvF
2�

−c

c

dqdq� str��21�q��12�q���

�� dnn�
2� dk

2�

eik�q−q��

ivFn�k + 

= − ����ScvF�
−c

c

dqdq� str��21�q��12�q���

�� dn�n���q − q�

n�
�

︸

=const.

= const. � ��ScvF str��B̄R − B̄L��BR − BL�� ,

where the indices refer to “ar”-space, const.=O�1� is a con-
stant, Sc the transverse cross section of the contact, and BR,L
are the generators of the slow fields in the left and the right
dot, respectively. Noting that the density of states per vol-
ume, ��mkF

d−2 �where kF=vFm is the Fermi momentum�
and Sckf

d−1�N is proportional to the number of transverse
channels, N, supported by the connector region, the prefactor
can be written as const.�N	1, a number which we assume
large lest a semiclassical description of the contact becomes
meaningless. We also note that the quadratic form may be
replaced by its unique rotationally invariant generalization to

the full field manifold, str��B̄R− B̄L��BR−BL��→ 1
4str�QLQR�,

where Q=T�T−1. While a quadratic expansion of the latter
expression reproduces the bilinear term, the largeness of N
implies that typical values contributing to the B integration,
B�N−1/2�1, which means that nonlinear contributions be-
come inessential in the limit of large channel numbers. We
thus conclude that the coupling term can be rewritten as

Seff�Q� = const. � N str�QLQR� .

Finally, the obvious generalization of the above two-dot con-
struction to an entire quantum dot array reads as

Seff�Q� = const. �
1

�D�
�
m

str�QmQm+1� , �43�

where Qm is the Q matrix representing the mth dot and we
used that the channel number N���D��−1. Before turning to
the discussion of localization properties, a few remarks on
the construction above are in order.

Conceptually, the above reduction programs involves
three steps: �1� identification of “low energy modes,” i.e.,
modes that decay on the largest time scales of the problem,
�2� identification of “high energy,” or quickly decaying
modes, and �3� perturbative integration over those fast modes
that will conceivably couple to the slow modes. In principle,
that integration can be explicated for any fluctuation in the
problem. In practice, however, only few modes will effec-

tively couple to the slow degrees of freedom, and these rel-
evant fluctuations are best identified by semiclassical consid-
erations:

�i� Semiclassically speaking, a “mode” represents the co-
herent propagation of a retarded and an advanced Feynman
amplitude along classical trajectories in-phase space. Lo-
cally, the semiclassical dynamics of such composites is de-
scribed by the Liouville operator, as is manifest in the action
�Eq. �39��. This trajectory interpretation helps in identifying
the relevant fast modes. E.g., in the system depicted in Fig.
9, the coupling between the ergodic slow modes of each dot,
Qm, is dominated by trajectories swiftly propagating from
one dot to the other, i.e., modes emanating at phase-space
points x��c.

�ii� Although this identification of fast modes rests on spe-
cific model assumptions �no backscattering in the contact
region, etc.�, the result �Eq. �43�� is reasonably universal. For
example, a somewhat more elaborate construction will show
that the same action describes connector regions containing
chaotic scattering and momentum relaxation by themselves.
�The latter complication would manifest itself in an altered
value of �D, though.� Generally speaking, the low energy
physics of the system will reduce to Seff, as long as the dots
are isolated from each other in the sense tf ��D.

C. Localization from the effective action (43)

The effective action �43� is equivalent to a “lattice ver-
sion” of the diffusive nonlinear 
 model of quasi-one-
dimensional disordered wires. Indeed, we may pass to a con-
tinuum limit

1

�D�
�
m

str�QmQm+1� →
a

�D�
�

0

L

dx str��Q � Q� ,

where Qm→Q�x� is replaced by a smooth field, x=ma, and a
the spacing between the dots. Comparing to the standard
form of the diffusive model,62 where the action is
���dx str��Q�Q� with � the localization length, we are led
to the identification a

�D� ��.

VI. CONCLUSION

In the preceding sections, we showed how a theory of
Anderson localization can be constructed for a sample in
which the microscopic electron dynamics is ballistic, rather
than disordered-diffractive. Our theory of ballistic Anderson
localization paraphrases the scaling approach to localization
in disordered quantum wires of Dorokhov32 and Mello, et
al.,33 using the language of the trajectory-based semiclassical
formalism. As noted in Sec. I, the interest of constructing
such a semiclassical theory is not the structure of the theory
itself or the phenomena it explains. Like most semiclassical
theories of quantum corrections in the perturbative regime,
the structure of the theory closely resembles the structure of
its fully quantum-mechanical counterpart for disordered met-
als, whereas the observed phenomena are the same in the
ballistic and disordered cases. Instead, the interest of the
semiclassical theory is that it shows how quantum effects
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that were known from disordered metals arise if the electron
dynamics is ballistic.

On hindsight, it should not come as a surprise that a
theory of ballistic Anderson localization can be constructed
by adapting the derivation of the Dorokhov-Mello-Pereyra-
Kumar equation for a disordered quantum wire. This point is
best made by reconsidering Dorokhov’s original derivation.32

In this derivation, impurity scattering is treated in the Born
approximation. All quantum-mechanical amplitudes are
squared into quantum probabilities. Hence, it is sufficient if
one can replace the quantum-mechanical probabilities by
classical ones. Such a replacement is a standard procedure
when connecting quantum-mechanical and semiclassical
theories. Its implementation for the array of chaotic cavities
is what is done here.

It is interesting to observe that, while small-angle encoun-
ters form a crucial link in our understanding of quantum
interference corrections in ballistic conductors, their role is
very limited in our description of localization in quasi-one-
dimension: They serve to cancel spurious contributions from
trajectories that enter the last cavity of the array more than
twice. �In Dorokhov’s original approach, such processes are
excluded automatically because of the condition that the
length of the wire is increased by an amount L much
smaller than the mean-free path l.32,33� Implicitly, small-
angle encounters do play a much more important role in our
theory, however, because they help to preserve unitarity in
the semiclassical theory. Unitarity is a key ingredient of both
the quantum-mechanical derivation of the DMPK equation
and the present semiclassical derivation. We note that unitar-
ity has played an important role in other extensions of the
semiclassical framework beyond its previously assumed do-
main of validity: it is used to relate weak localization and

enhanced backscattering, thus enabling a semiclassical de-
scription of weak localization without reference to small-
angle encounters,43,44,65 and it is used to obtain an alternative
expression for the spectral form factor, allowing its calcula-
tion in the nonperturbative regime by considering periodic
orbits of duration below the Heisenberg time only.66

We have also shown that the dynamical information en-
tering the semiclassical approach can be processed by differ-
ent means to derive an effective low energy field theory of
the system. This latter approach is based on the concept of
modes, fluctuations in-phase space decaying on parametri-
cally different time scales. A successive integration over
short-lived modes stabilizes an effective action of the most
persistent modes in the fluctuation spectrum. In the present
context, that low energy limit turned out to be equivalent to
the diffusive nonlinear 
 model of disordered wires. While
the field theory approach is arguably less explicit than the
direct classification of trajectories, it enjoys the advantage of
high computational efficiency, a paradigm previously exem-
plified on the problem of universal spectral correlations.59

For example, the above mentioned condition of unitarity, as
well as the symmetries relating trajectories to their time re-
versed are built into the field theory approach from the out-
set; there is no need for explicit bookkeeping in terms of
encounter processes. The price to be paid for this compact-
ness in the description is a higher level of abstraction,
though.
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